Radar Pulse Compression for Point Target and Distributed Target Using Neural Network
نویسندگان
چکیده
An important study of the responses to the point target and the distributed target of the radar echoes processed by a neural network pulse compression (NNPC) algorithm is presented in this paper. For whatever the purpose of a radar system, both of the point target and distributed target echoes are received simultaneously. It is always necessary and helpful to discriminate them clearly while detecting the desired target, which will reduce the influence for each other in pulse compression processing. However, in most of the pulse compression algorithms, it is only considered the radar purpose to process one type of the targets but neglect the other. This will make either the presence of a point target’s range sidelobes masking and corrupting the observation of the weak distributed target nearby or a distributed target with extended range interfering with the detection of the neighboring point target. By completely considering the interactions of a point target with a distributed target, we acquire all the possible data occurred in the procedure. Using these valid data, we can train the backpropagation (BP) network to construct it as a well performance of NNPC. To compare with the traditional algorithms such as direct autocorrelation filter (ACF), least squares (LS) inverse filter, and linear programming (LP) filter based on 13-element Barker code (B13 code), the proposed NNPC provides the requirements of high signal-to-sidelobe ratio, low integrated sidelobe level (ISL), and high target discrimination ratio. Simulation results show that this NNPC algorithm has significant advantages in targets discrimination ability, range resolution ability, and noise rejection performance while processing the interaction of point target with distributed target, which are superior to the traditional algorithms.
منابع مشابه
Extending the Radar Dynamic Range using Adaptive Pulse Compression
The matched filter in the radar receiver is only adapted to the transmitted signal version and its output will be wasted due to non-matching with the received signal from the environment. The sidelobes amplitude of the matched filter output in pulse compression radars are dependent on the transmitted coded waveforms that extended as much as the length of the code on both sides of the target loc...
متن کاملAssessment of Weighting Functions Used in Oppermann Codes in Polyphase Pulse Compression Radars
Polyphase is a common class of pulse compression waveforms in the radar systems. Oppermann code is one of the used codes with polyphone pattern. After compression, this code has little tolerant against Doppler shift in addition to its high side lobe level. This indicates that the use of Oppermann code is an unsuitable scheme to radars applications. This paper shows that the use of amplitude wei...
متن کاملA Technique for Pulse RADAR Detection Using RRBF Neural Network
Pulse compression technique combines the high energy characteristic of a longer pulse width with the high resolution characteristic of a narrower pulse width. The major aspects that are considered for a pulse compression technique are signal to sidelobe ratio (SSR), noise and Doppler shift performances. The traditional algorithms like autocorrelation function (ACF), recursive least square (RLS)...
متن کاملStudy of Different Radar Waveform Generation Techniques for Automatic Air Target Recognition
Target recognition is the most challenging problem for missile defense. For accurate target recognition discriminant features must be extracted from the target signature. To extract suitable features an optimized waveform is needed which can be generated using pulse compression techniques. Pulse compression is a technique which can be generally used for achieving the benefits of short pulse rat...
متن کاملA New Algorithm for the Deinterleaving of Radar Pulses
This paper presents a new algorithm for the deinterleaving of radar signals, based on the direction of arrival (DOA), carrier frequency (RF), and time of arrival (TOA). The algorithm is applied to classic (constant), jitter, staggered, and dwell switch pulse repetition interval (PRI) signals. This algorithm consists of two stages. In the first stage, a Kohonen neural network clusters the receiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Inf. Sci. Eng.
دوره 23 شماره
صفحات -
تاریخ انتشار 2007